quant savvy white logo

Blog Details

Explore a world of ideas, our recent articles will leave you hungry for more

Quantifying market inefficiency or behaviour beyond randomness

Algorithmic trading software

[av_textblock textblock_styling_align=” textblock_styling=” textblock_styling_gap=” textblock_styling_mobile=” size=” av-desktop-font-size=” av-medium-font-size=” av-small-font-size=” av-mini-font-size=” font_color=” color=” id=” custom_class=” template_class=” av_uid=’av-lfjormlh’ sc_version=’1.0′ admin_preview_bg=”]
Outline what we follow when developing our algorithmic trading systems.

  • An algorithmic trading system is a set of rules which seek to best model repeatable non-random behaviour in markets.
  • Define the behaviour, determine the conditions in the behaviour persists and then data mine and create code that best fits this non-random behaviour.

1. What is an algorithmic trading strategy?

When we are day trading, we have 3 things to every position; entry price, stop price and target price. What determines each of these factors is a human decision based on an estimation that our entry will make a profit. Some traders have a set plan, other trade from there gut, but regardless of trading style each entry either consciously or subconsciously, is based on definite rules. We are aiming to model this market behaviour and quantify it into a series of rules. Whether you are working on technical analysis, fundamental news or price action we aim to break down your entries into a series of rules which can then be tested against past data or data on various markets.

[/vc_column_text][vc_separator type=”normal” color=”#d9e8f4″][vc_column_text]

2. Process of creating our algorithmic trading system

For all our algorithmic trading systems we follow this basic approach:


  • All futures algorithmic trading systems are based on finding and pulling a fundamental truth about the market. Define what fundamental truth you’ll be going after. All markets have a tendency to trend beyond random. “There’s more than one way to skin a cat”, this means there is no right or wrong method as long as you are trying to expose a market inefficiency which shows some repeatable behaviour.

Determine Conditions:

  • Determine the conditions under which the defined truth tends to occur. For example, let’s take trend following truth: Following this approach, we will ask how do I measure a trend? Since most trends occur randomly, we need a trend that is beyond a confidence level of randomness. So does this trending tendency beyond random exhibit the same degree of persistence beyond one year? Two years? Five years? If not, is there some point at which the persistence beyond random occurs every year? If so, does it also persist at the same frequency for 5, 10, 50 different markets? If so, you’ve discovered a fundamental truth/market inefficacy which we can exploit.

[/vc_column_text][vc_separator type=”normal” color=”#d9e8f4″][vc_single_image image=”19671″ img_size=”full” alignment=”center” onclick=”custom_link” qode_css_animation=”” link=”https://quantsavvy.com/quant-investing-vs-fundamental-investing/”][vc_separator type=”normal” color=”#d9e8f4″][vc_column_text]

Mine the data and create your code

  • The next stage we write code necessary to fit create rules to model this behaviour. Once our basic coded rules are in process we then determine how well it maps against the behaviour. After you’re satisfied you’ve developed a satisfactory method for mining the behaviour, you can do an edge test to see if it happens beyond random. If not, use Monte Carlo sims to determine confidence levels for trading the method. Determine at what confidence level you’ll stop trading. Examine the drawdown versus the profit. Is it worth risking any money on this? If so, allocate money using a money management scheme

Creating our algorithmic trading system – Coding our rules

Some details regarding creating our algorithmic trading rules. There are three parts to our trade: entry, stop and target. When we develop an algorithmic trading system we look for an edge. An edge is a statistical estimation that our trade will be profitable over 1000 trades. It is the same as how a casino operates in blackjack. A casino works on an edge basis and know that over 1000 hands of blackjack they have the probability of winning in their favour – this is a mathematical and statistical absolute.

  • Entry: for a winning system, we want our entry to have a statistical edge, when we enter a trade we expect that our entry has some predictive power in our favour.
  • Stop: when we create a stop for our entry we expect it to have some predictive power that the odds of our success for our trade has diminished and we either trail stop to lock in gains or stop out to ensure we don’t lose any more capital.
  • Target: this has some predictive ability to determine the market is most likely to either stall or reverse at this point. We expect our target to accurately predict based on the market action has given us a sign or quantitative data to tell us to exit at this point.

When we create an algorithmic trading system we don’t want our entry, stop or target to be static. This means we can’t just choose a stop based on our account size as this has zero predictive power over current market conditions. Static stops and targets mean our system is not accurately assessing the current market and quantitative data.[/vc_column_text][/vc_column][/vc_row]


Witness The AI Magic With 55K+ People Like You!

Embrace your AI assistant with a single click & elevate your content creation